10	$\begin{gathered} \text { 4-digit } \\ \text { summary } \end{gathered}$	$\begin{aligned} & 11 \\ & \mathrm{PR} \end{aligned}$	$\begin{gathered} 10 \\ \text { Pnotr } \end{gathered}$	$\begin{gathered} 01 \\ \text { notPR } \end{gathered}$	$\underset{\text { notPnotr }}{00}$	$\begin{gathered} \mathrm{P} \text { (is possible) } \\ =\begin{array}{l} \text { ontp is } \\ \text { unnecessary } \end{array} \end{gathered}$	$\begin{array}{c\|} \hline \text { notp } \text { (is } \\ \text { possisele) } \\ \text { unisecssary } \\ \text { unnecess } \end{array}$	$\begin{gathered} \text { P is necessary } \\ \text { = notp is } \\ \text { impossible } \end{gathered}$	$\begin{gathered}\text { notp is } \\ \text { necessary } \\ \text { Pis }\end{gathered}=$ impossible	$\begin{aligned} & R \text { (is possible) } \\ & =\text { notR is } \\ & \text { unnecessary } \end{aligned}$	$\begin{array}{c\|} \hline \text { notR (is } \\ \text { possible) } \\ \text { unis } \\ \text { unnecessary } \end{array}$	$\begin{gathered} \mathrm{R} \text { is necessary } \\ =\text { not } R \text { is } \\ \text { impossible } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { notR is } \\ \text { necessary = } \\ R \text { is } \\ \text { impossible } \\ \hline \end{array}$	both items contingent	
1	0	0	0	0	0										
2	1	0	0		1		2		2		2		2		2
3	10	0	0	1	0		3		3	3		3			3
4	11	0	0	1	1		4		4	4	4				4
5	100	0	1	0	0	5		5			5		5		5
6	101	0	1		1	6	6				6		6		6
7	110	0	1	1	0	7	${ }_{7}^{7}$			7	7			7	
8	111	0	1	1	1	8	8			8	8			8	
10	1000 1001	1	0	0	${ }_{1}$	9		9		10		9			9
10 11	1001 1010	1	0	1	1	10 11	10 11			10 11	10	11		10	11
12	1011	1	0	1	1	12	12			12	12			12	11
13	1100	1	1	0	0	13		13		13	13				13
14	1101	1	1	0	1	14	14			14	14			14	
15	1110	1	1	1	0	15	15			15	15			15	
16	1111	1	1	1	1	16	16			16	16			16	
16	number of moduses	8	8	8	8	12	12	3	${ }^{3}$	12	12	${ }^{3}$	3	7	8

[^0]oa 3 -item (PQR) framework (3fw),
The column headings number eight, namely
h1, $110,101,100,011,010,001,000$
Id the rows Lember 255, from '00000000' to ' '1111111
see Chapter 12, Table 12 .
In 4 -item (PaRS) framework (4 fw),
he column headings sumber sixteen, na
${ }^{\text {And }}$ And the rows number 65 's 336 , from '00000000000000000' to
And the rown number
sec Chapter 161 on this new exploratio.

$\begin{gathered} \text { 4-digit } \\ \text { summary } \end{gathered}$		$\left\|\begin{array}{c} (\mathrm{P}+\text { notR } \mathrm{R}) \text { is } \\ \text { possibibe if }, \\ \text { not-then } \mathrm{R} \end{array}\right\|$		$\begin{gathered} \text { (notP }+ \text { notR) } \\ \text { is possible }=\text { if } \\ \text { notP, not- } \\ \text { then R } \end{gathered}$	$\left\|\begin{array}{c}(P+R) \text { is } \\ \text { impossibe }=\text { if } \\ P \text {, then not } R\end{array}\right\|$	$\left\|\begin{array}{c}(P+\text { noti) is } \\ \text { impossible } \\ \mathrm{P}, \text { it } \\ \text { in }\end{array}\right\|$	$\left\lvert\, \begin{array}{c\|} \text { (notP }+R \text { is } \\ \text { impossible }=\text { if } \\ \text { notP, then } \\ \text { notR } \end{array}\right.$		$=\begin{gathered} (P+R) \text { is } \\ \text { unnecessary } \end{gathered}$	$(\mathrm{P}+$ not R$)$ is unnecessary	$(\operatorname{not} P+R) \text { is }$ unnecessary	$\left\|\begin{array}{l} \text { (notP + notR) } \\ \text { is unnecessary } \end{array}\right\|$	$\begin{gathered} (\mathrm{P}+\mathrm{R}) \text { is } \\ \text { necess } \end{gathered}$	$\underset{\substack{(P+\text { notk }) \text { is } \\ \text { necessary }}}{ }$	(notp +R$)$ is necessary necessary	$\left\|\begin{array}{c} \text { (notP }+ \text { notR) } \\ \text { is necessary } \end{array}\right\|$
0																
1				2	2	2	2		2	2	2					2
10			3		3	3		3	3	3		3			3	
${ }^{11}$			4	4	4	4			4	4	4	4				
100		5			5		5	5	5		5	5		5		
101		${ }^{6}$		6	${ }^{6}$		6		${ }^{6}$	${ }^{6}$	${ }^{6}$	${ }^{6}$				
110		7	7		7			7	7	7	7	7				
111		8	8	8	8				8	8	8	8				
1000	9					9	9	9		9	9	9	9			
1001	${ }^{10}$			10		10	10		10	10	10	10				
1010	11		${ }^{11}$			11		11	11	11	11	11				
1011 1100	12		12	12		12			12	12	12	12				
1100 1101	13	${ }^{13}$					13 14	13	13	13	13	13 14 14				
1101 1110	14	14		14			14		14	14	14	14				
1110 1111	15	15	15					15	15	15	15	15				
1111	16	16	16	16					16	16	16	16				
number of	8	8	8	8	7	7	7	7	14	14	14	14	1	1	1	1
MATRIX- 4 Moduses of conditional propositions involving P, R and their negations									Moduses of conjunctive propositions involving P, R and their negations							
	See Chapter 13.4, Table 13.12								See Chapter 13.4, Table 13.11							
	NOTE WELL that I here equate " $(P+R)$ is impossible" to "if P, then not R ", and so forth. with DE DICTA conditioning in mind (in logical conditionals, only "connection" is intended).								Note that it is not possible to specify an ACTUAL item or negation of item in matricial analysis, since matrices are based on modal specifications ($0=$ impossible, $1=$ possible).							
	But for DE RE conditioning, the connection does not suffice: the "basis" too must be specified.								This means that we cannot demonstrate apodosis type argument in this system. We can only mention an actual minor premise insofar as it is implied by an incontingent one.							
	Thus, for de re "it P, then notR" we would have to add "P is possible" "t "P+R is is inpossible" in a formula.															
									We can only mention an actual minor premise insofar as it is implied by an incontingent one. That is, if it is impossible it is inactual and if it is necessary it is actual -							
	The de edictal /e er edisisinction evaporates when we get to causative propositions, since bothconnection and basis are implied there.								but contingent actualities or inactualites have no representation here.							
	connection and basis are implied there.								Notwithstanding, we can express the fact that a proposition is contingent: If both it and its negation are possible, then it is contingent.							
	For the negations, just reverse 0 and 1 (except in the first row, where 0s always hold).															
									For the negations, just reverse 0 and 1 (except in the first row, where 0s always hold).							
	For the 3-item framework, see Table 13.15															

$\begin{gathered} \text { 4-digit } \\ \text { summary } \end{gathered}$	$\left.\begin{gathered} \text { connection } \\ \text { (abs) } \\ \text { Pof R } \end{gathered} \right\rvert\,$	$\left.\begin{gathered} \text { Not } \\ \text { connection } \\ \text { (abs) } \\ \text { Pof } \mathrm{by} \end{gathered} \right\rvert\,$	interpretations of the individual moduses	summary	
0			impossible modus		
1		2	only notP+notR possible $=$ both P , R impossible	incootingency	
10		3	only notP+R possible $=P$ P impossible, R necessary	incontingency	
11		4	not P + possible, not $P+$ notr possible $=$ P impossible	incontingency	
100		5	only P+notR possible $=$ P necessary, R impossible	incontingency	
101		6	P+notR possible, notP+notR possible $=$ R impossible	incontingency	
110	7		P+notR possible, not +R possible $=$ complete necesssary prevention by P of R	only strong prevention	mn
111	8		all but $P+$ R possible $=$ complete contingent prevention by P of R	joint s-w prevention	mq abs
1000		9	only P PR possible = both P, R necessary	incontingency	
1001	10		P+R possible, notP+ +notR possible $=$ complete necessary causation	only strong causation	mn
1010		11	P+R possible, notP+R possible $=$ R necessary	incontingency	
1011 1100	12			joint 5 -w caustion incontingency	qab
1100 1101		${ }^{13}$	P+R possible, $P+$ +notR possible $=P$ necessary	incontingency	
1101 1110	14		all but not $P+R$ possible $=$ necessary patial causation by P of R	joint sww causation	$n \mathrm{n}$ abs
1110 1111	15		all but not P +notR possible $=$ necessary partial prevention by P of R	joint s-w prevention both caustion and prevention	np abs
1111	16		all possible $=$ partial contingent causation and partial contingent prevention or no connection	both caustion and prevention	
number of moduses	7	8			
MATRIX - tconnection or not			Interpretations of the moduses		
			See Chapter 13.2, and Chapter 16.2 and its Table 16.1		
Connection = causation or prevention			The significance of this list is that it provides us with all the consistent causative possibilities in a two-item framework.		stats
			impossible modus	${ }_{7}^{1}$	
			strong or joint (absolute) caustion	3	
			strong or joint (absolute) prevention weak causation and weak prevention (abs)	3 1	

[^0]: | Modus ts | MATRIX - the 2-items (PR) combinations that define the moduses |
 | :--- | :--- |
 | See Chapter 12, Table 12.1 | Moduses of individual items P, R and their negations |

 This segments shows the four combinations of two items (PR),
 and their negations, namely (column headings): $11=P$ is present and R is present
 $=P=P$ is present R. R. $10=P$ is resent and R is absent
 $01=P$ is absent and R is present $01=P$ is absent and R is present
 $00=P$ is absent and R is absent descending value from left to righ.
 The rows numbered $1-16$ (under heading 10) refer to the moduses
 that aris in a 2 -item framework (2fw), as all combinations of
 Sere 1 means inserted in an ordderly manner in the cells.
 Here, 1 means 'possible' and 0 means 'impossible', note well.
 The 16 combininations of 15 and 0 s. are summarized as 4 -digitit.
 Note increasing value of this summary from '0000' to '1111'.

 Note well that here the modus number means 'possible' (not implying 'resesent') and blank means 'inpossible' (not merely 'absent').
 As claritied in the table on formulae, cells in each of these columns are derived trom the matrix to the lett For example: 'P is possible' is true provided that the PR columns 11 and 10 are not both $=0$.
 Note that the first row cells are always 0 throughout the whole spreadsheet, because modus $\# 1$ is logically impossib that is, the modus 'OOOO' '(with 0 s in the four columns $11,10,01,00$) is universally excluded by the laws of thought

 The bottom row counts the number of moduses flaged in the column above,
 telling us the number of moduses apolicable to the torm concemed specile
 Note that what was found out and tabulated manually in past research is here mechanically calculated.
 The formulae used to calculate each cell are s.sonn in a separate table (with the fields transposed).
 The results seem to correspond throughout. This will not be repeated in each segment, but is true of all of them.
 For the 3-item framework, see Table 13.13

